Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water

نویسندگان

  • Kaijie Yang
  • Baoliang Chen
  • Lizhong Zhu
چکیده

The substantial aggregation of pristine graphene nanosheets decreases its powerful adsorption capacity and diminishes its practical applications. To overcome this shortcoming, graphene-coated materials (GCMs) were prepared by loading graphene onto silica nanoparticles (SiO2). With the support of SiO2, the stacked interlamination of graphene was held open to expose the powerful adsorption sites in the interlayers. The adsorption of phenanthrene, a model aromatic pollutant, onto the loaded graphene nanosheets increased up to 100 fold compared with pristine graphene at the same level. The adsorption of GCMs increased with the loading amount of the graphene nanosheets and dramatically decreased with the introduction of oxygen-containing groups in the graphene nanosheets. The highly hydrophobic effect and the strong π-π stacking interactions of the exposed graphene nanosheets contributed to their superior adsorption of GCMs. An unusual GCM peak adsorption coefficient (Kd) was observed with the increase in sorbate concentration. The sorbate concentration at peak Kd shifted to lower values for the reduced graphene oxide and graphene relative to the graphene oxide. Therefore, the replacement of water nanodroplets attached to the graphene nanosheets through weak non-hydrogen bonding with phenanthrene molecules via strong π-π stacking interactions is hypothesized to be an additional adsorption mechanism for GCMs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multifunctional azobenzene-based polymeric adsorbent for effective water remediation

The efficient removal of trace carcinogenic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and ionic dyes, from water is an important technical challenge. We report a highly effective recyclable multifunctional azobenzene (AZ)-based silica-supported polymeric adsorbent which can simultaneously remove both PAHs and anionic dyes from water to below parts per billion (ppb) lev...

متن کامل

Recyclable nanoscale zero-valent iron-based magnetic polydopamine coated nanomaterials for the adsorption and removal of phenanthrene and anthracene

In this study, nanoscale zero-valent iron nanoparticles (NZVIs) were coated with silica and polydopamine using a two-step process. The coated nanoparticles were applied as adsorbents for removal of two common polycyclic aromatic hydrocarbons pollutants, phenanthrene (PHE) and anthracene (ANT) from aqueous system. Adsorption kinetics followed a pseudo-second-order model. Isotherms and thermodyna...

متن کامل

Fabrication of ultrathin graphene oxide-coated membrane with hydrophilic properties for arsenate removal from water

Terms and conditions of current drinking water quality standards, including reducing the maximum arsenic concentration from 50 μgl-1 to 10 μgl-1 and predicted stricter standards in future, reveals the necessity for development of new technologies. This study aimed to prepare and evaluate a new nanocomposite membrane using graphene oxide (GO) thin layer to remove arsenic (v) from water. To fabri...

متن کامل

Synthesis of graphene oxide / polydopamine composite for coating on clay substrate for water treatment

Water purification is a vital and essential thing for human life. The presence of pollutants in water is a major threat to the environment and human health. Various materials have been proposed and used for water treatment in recent years. Recent research has shown the potential of two-dimensional materials such as graphene oxide and its composites for water purification. The goal of this proje...

متن کامل

Amino Functionalized Silica Coated Fe3O4 Magnetic Nanoparticles as a Novel Adsorbent for Removal of Pb2+ and Cd2+

The present study synthesizes a novel adsorbent by coating Fe3O4 magnetic nanoparticles with amino functionalized mesoporous silica. The FTIR spectrums indicate that silica has been successfully coated on the surface of Fe3O4 and 3-aminopropyl tri methoxysilane compound have been grafted to the surface of silica-coated Fe3O4. The XRD analysis shows the presence of magnetite phase with cubic spi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015